Hydroxypropyl-β-Cyclodextrin Depletes Membrane Cholesterol and Inhibits SARS-CoV-2 Entry into HEK293T-ACEhi Cells

Vaccination has drastically decreased mortality due to coronavirus disease 19 (covid19), but not the rate of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Alternative strategies, such as inhibition of virus entry by interference with angiotensin-I-converting enzyme 2 (ACE2) receptors could be warranted. Cyclodextrins (CDs) are cyclic oligosaccharides that are able to deplete cholesterol from membrane lipid rafts, causing ACE2 receptors to relocate to areas devoid of lipid rafts. To explore the possibility of reducing SARS-CoV-2 entry, hydroxypropyl-β-cyclodextrin (HPβCD) was tested in a HEK293T-ACE2hi cell line stably overexpressing human ACE2 and Spike-pseudotyped SARS-CoV-2 lentiviral particles. Exposure of HEK293T-ACEhi cells to concentrations of HPβCD starting from 2.5 mM to 10 mM showed a concentration-dependent reduction of approximately 50% of the membrane cholesterol content. In addition, incubation of HEK293T-ACEhi cells with HIV-S-CoV-2 pseudotyped particles in the presence of increasing concentrations of HPβCD (from 0.1 to 10 mM) displayed a concentration-dependent effect on SARS-CoV-2 entry efficiency. These data indicate that HPβCD is a candidate for use as a SARS-CoV-2 prophylactic agent.

Silvia AlboniValentina SeccoBianca PapottiAntonietta VilellaMaria Pia AdorniFrancesca ZimettiLaurent Schaeffertascedda fabioMichele ZoliPascal LeblancErica Villa

See the full article here: Hydroxypropyl-β-Cyclodextrin Depletes Membrane Cholesterol and Inhibits SARS-CoV-2 Entry into HEK293T-ACEhi Cells

Molecular Mind Games: The Medicinal Action of Cyclodextrins in Neurodegenerative Diseases

Cyclodextrins are often used as molecular carriers for small active ingredients in the medicine. Recently, the intrinsic medicinal activity of some of these compounds has been under investigation, mainly related to their ability to interfere with cholesterol and, therefore, prevent and treat cholesterol-related diseases such as cardiovascular disease and neuronal diseases arising from altered cholesterol and lipid metabolism. One of the most promising compounds within the cyclodextrin family is 2-hydroxypropyl-β-cyclodextrin (HPβCD), owing to its superior biocompatibility profile. This work presents the most recent advances in the research and clinical use of HPβCD against Niemann–Pick disease, a congenital condition involving cholesterol accumulation inside lysosomes in brain cells, Alzheimer’s and Parkinson’s. HPβCD plays a complex role in each of these ailments, going beyond the mere sequestering of cholesterol molecules and involving an overall regulation of protein expression that helps restore the normal functioning of the organism.
Fantastic review by Susana Santos Braga form Universidade de Aveiro

See the full article here: Molecular Mind Games: The Medicinal Action of Cyclodextrins in Neurodegenerative Diseases

Grafting of Cyclodextrin to Theranostic Nanoparticles Improves Blood-Brain Barrier Model Crossing

today’s cyclodextrin:
Core–shell superparamagnetic iron oxide nanoparticles hold great promise as a theranostic platform in biological systems. Antonino Puglisi and coworkers report the biological effect of multifunctional cyclodextrin-appended SPIONs (CySPION) in mutant Npc1-deficient CHO cells compared to their wild-type counterparts. CySPIONs show negligible cytotoxicity while they are strongly endocytosed and localized in the lysosomal compartment. Through their bespoke pH-sensitive chemistry, these nanoparticles release appended monomeric cyclodextrins to mobilize over-accumulated cholesterol and eject it outside the cells. CySPIONs show a high rate of transport across blood–brain barrier models, indicating their promise as a therapeutic approach for cholesterol-impaired diseases affecting the brain.

University of Natural Resources and Life Sciences, Vienna (BOKU)Peter van OostrumErik Reimhult
Università degli Studi di CataniaNoemi BognanniGraziella Vecchio
Ege University: Ece Bayir
University of Oxford: Dawn Shepherd, Frances Platt

See the full article here: Grafting of Cyclodextrin to Theranostic Nanoparticles Improves Blood-Brain Barrier Model Crossing

Confocal micrographs of Npc1-deficient CHO after incubation with 0.1 mg/mL FITC-CySPION for 72 h showing co-localization, with Pearson’s coefficient of 0.37, between FITC-CySPION (green) and LysoTracker Deep Red within the lysosomal compartments (red) within the ROI preproduced on the right. The used excitation wavelengths and fluorescence maxima are indicated in the figures. The field of view is 290 × 290 µm2.

We the Scientists: How a Daring Team of Parents and Doctors Forged a New Path for Medicine

Behind some science, there are stories to learn as the human side is more important than the professional one. The tale that tells us how hydroxypropyl-beta-cyclodextrin became a drug candidate from an excipient to treat desperate patients suffering in Niemann-Pick type C disease is certainly a story worth telling and reading. A new science book by The Wall Street Journal reporter Amy Dockser Marcus took over a decade to write and includes the journey of the Hempel family trying to save Addi & Cassi’s lives with cyclodextrin (they were the first patients treated with the drug).

Order the book on amazon.com

Disease management to disease modification – removing plaque to undo atherosclerosis

You can read a great interview with folks from Cyclarity Therapeutics at Longevity.Technology. Since they are one of the few companies developing tailor-made CDs to tackle a major disease, this is certainly worth attention.
“Cyclarity’s approach to true disease medication, and therefore reversal of age-related disease, without doubt, offers a great deal of promise for investors, for healthcare systems in the US and globally, and most of all for those affected by the atherosclerosis-related disease.
. . . this may be the perfect opportunity for Cyclarity to enter the field, as it is one of the few solutions available that addresses the limiting factors of previous therapies both from a scientific perspective and from a market perspective.”

See the full article here

Cyclo Therapeutics Announces First Patient Dosed in Phase 2b Study of Trappsol® Cyclo™ for the Treatment of Early Alzheimer’s Disease

Cyclo Therapeutics, Inc. announces first patient dosed in Phase 2b study of Trappsol® Cyclo™ for treating early Alzheimer’s disease.

Trappsol® Cyclo™ is the Company’s proprietary formulation of hydroxypropyl beta-cyclodextrin. In multiple clinical studies, it has shown encouraging results in effectively managing the transportation of cholesterol, a known defect in neurodegenerative diseases. Many known risk factors for Alzheimer’s disease are associated with cholesterol metabolism.

Cyclo Therapeutics is currently testing the same investigational Trappsol® Cyclo™ drug in Phase 3 clinical trial (TransportNPC™) and a long-term extension study for the treatment of Niemann-Pick disease Type C1, a rare, fatal, and progressive genetic disorder. Taking the place of the defective NPC1 protein, Trappsol® Cyclo™, with its cyclic structure, facilitates the transport of accumulated cholesterol out of cellular lysosomes so it can be further processed and excreted out of cells. With the biological similarities demonstrated between Niemann-Pick disease Type C1 and Alzheimer’s disease, including cholesterol accumulation in regions of the brain, elevated levels of Tau in cerebrospinal fluid (“CSF”), and amyloid plaques in the brain, the Company believes Trappsol® Cyclo™ has significant potential to be an effective treatment option for Alzheimer’s disease.

Read the full announcement here

ZyVersa Therapeutics Adds Two Esteemed Leaders in Nephrology to Its Renal Scientific Advisory Board to Support Clinical Advancement of Lead Renal Drug Candidate, VAR 200

ZyVersa Therapeutics Inc., developing, among others VAR200, a therapeutic 2-hydroxypropyl-beta-#cyclodextrin for FSGS, Alport syndrome, and diabetic kidney disease, just added two leading nephrologists to their Scientific Advisory Board.
We hope this will help move the program forward to follow this one-of-a-kind application of CDs with great excitement.

See the full article here

Evidence of redox imbalance and mitochondrial dysfunction in Niemann-Pick type C 1 patients: the in vitro effect of combined therapy with antioxidants and β‐cyclodextrin nanoparticles

This research contributes to a better understanding of the mechanism of action of #cyclodextrin in Niemann Pick C, which could lead to further applications. Carmen Vargas – Federal University of Rio Grande do Sul evaluated naked and nanoparticle CDs for restoring mitochondrial functions, as well as the beneficial combined effects of treatment with antioxidant N-Acetylcysteine and Coenzyme Q10
Tatiane HammerschmidtBruna DonidaJéssica Lamberty FaverzaniFernanda PolettoDinara Jaqueline Moura

See the full article here

APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes

Understanding the mechanism of action is crucial in order to develop truly efficient cyclodextrin-based actives. Massachusetts Institute of Technology’s study on Alzheimer’s disease reveals correlations between APOE4, cholesterol transport, and therapeutic opportunities for CDs.
Important study Joel Blanchard, Li-Huei Tsai et al.

See the full article on nature.com

Beren Awarded Expedited Roadmap for Treatment of Homozygous Familial Hypercholesterolemia

Fascinating news from Beren Therapeutics:
Beren Awarded Expedited Roadmap for Treatment of Homozygous Familial Hypercholesterolemia
Beren’s novel lead asset, BRN-002, was awarded an Innovation Passport under the United Kingdom’s Innovative Licensing and Access Pathway (ILAP), for the reversal of atherosclerosis in patients with Homozygous Familial Hypercholesterolemia. The ILAP aims to accelerate the time to market for innovative medicines that address the needs of patients with life-threatening or seriously debilitating diseases.
“We are excited to begin work under ILAP and look forward to collaborating with other regulators, payors, and governments to expedite the development and identify and remove access barriers.” – commented Jason Camm, CEO. Jules Payne from HEART UK – The Cholesterol Charity added that “Significant unmet needs remain, and with this advancement, we are hopeful for a new treatment option that can truly alter the course of the disease for the children and patients living with HoFH.”
Beren Therapeutics, P.B.C. is currently in stealth.

See the full article here